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FOR BODIES IN HIGH-SPEED FLOW

By Nathaniel B. Cohen

SJMMARY

A meti_od for computing the turbulent heat transfer to two-

dimensional and axisymmetric bodies in high-speed flow is derived from

the integrated equations of the boundary layer by utilizing a Stewartson

t2_e transformation. A modified Reynolds analogy between skin friction

and heat transfer which depends upon local pressure gradient results

from the analysis. Exact and approximate solutions are derived from the

approximate differential equations; the exact solution is applicable for

arbitrary initial (transition) conditions and the approximate solution

requires fulJy developed turbulent flow from stagnation point or !eadim_

edge.

For the exact solution, the ass_imption of fully developed turbulent

flow from the stagnation point yields a solution representative of a

varleo_ of arbitrary transition solutions. The exact solution (restricted

tu stagnation initial conditions) and the approximate solution are shown

to agree within 5 percent when applied to several blunt shapes. The

presen_ solutions general]y predict the measured heating rates on these

bodies within the accuracy of the measurements except where transition

was thought to beg Ln in the region of the peak predicted heat transfer.

The present solutions appear to be sufficiently accurate for design

purposes. The exact solution alone offers the generality of arbitrary

<ransit]on; the approximate solution offers accuracy and relative sim-

plicity but requires the assumption of stagnation-point initial condi-

tions. Because of the scarcity of knowledge of the transition phenomenon,

this latter restriction does not seriously impair the usefulness of the

approximation.
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INTRODUCTION

Reentry conditions at high Reynolds n_ber and the possibility of
surfaces roughened by collisions with metec_ric particles and dust are
conducive to the existence of turbulent boundary layers on missiles,
satellites, spaceships, and similar vehicl,_s entering a planetary
atmosphere. A primary concern of the ballistic missile program, for
example, is the accurate prediction of turbulent heat transfer to a
blunt body in high-speed flow. This problem has inspired a great deal
of research in recent years; although manyapproximate theories have
evolved, none appears to be sufficiently general for widespread
application.

The problem is the computation of turlulent heat transfer from a
compressible (possibly dissociated) gas to a cold wall in the presence
of a pressure gradient. Except for the ca_e with dissociation, the
zero-pressure-gradient skin friction mayb_ computedwith sufficient
accuracy either from mixing length theories, for example, those of
Van Driest for a plate (ref. l) and for a cone (ref. 2), or from an
empirical power law such as the Blasius la__. (See, for example, ref. 3.)
Compressibility in the latter case maybe taken into account through a
reference temperature formulation of the power law. In both methods,
heat transfer is computedfrom the skin fr_ction through the use of
Reynolds analogy between heat transfer and skin friction suitably modi-
fied for the effect of a nonunit Prandtl number.

The presence of a pressure gradient seriously modifies the flow and
the subsequent friction and heat-transfer behavior. Most recent methods
of predicting the turbulent heat transfer to a body in the presence of a
pressure gradient center about extensions cf the inverse power law friction
coefficient. Someof these are described hy Libby and Cresci in refer-
ence 4. The simplest uses flat-plate skin friction and heat-transfer rela-
tions evaluated for the local flow conditicns on the body in question.
Rose, Probstein, and Adams(ref. 5) combine a flat-plate shear law with
the complete momentumequation integrated across the boundary layer and
including pressure gradient. Heat transfer is computedfrom the resulting
skin friction through the flat-plate Reynolds analogy modified to account
for Prandtl number. Reference 5 reasons th{t the effect of the pressure
gradient on the velocity and temperature profiles is small and thus the
flat-plate friction law and analogy between heat transfer and skin fric-
tion are valid.

A relation between heat transfer and s_in friction including the
effect of pressure gradient maybe derived _romthe integrated momentum
and energy equations. (See refs. 4, 6, and 7-) Bloom and Martellucci
(ref. 6) were apparently the first to use this relation, and they combined
it with an inverse power friction law and a reference enthalpy correction



for compressibility effects. The results of this method and a similar
method (ref. 4) indicated predicted heat transfer lower than that found
experimentally, and excessive dependenceof the modified Reynolds anal-
ogy upon pressure gradient. Assumption of the validity of the Crocco
form of the total enthalpy-velocity relation in the boundary layer
appears to have caused this trend.

Another method of accounting for compressibility and pressure gra-
dient was developed by Reshotko and Tucker. (See ref. 8.) This method
utilizes the Stewartson transformation (ref. 9) applied to the turbulent
case, a friction law including the effect of pressure gradient upon
shape factor, and a Reynolds analogy factor evaluated from an approximate
solution for laminar flow in reference lO. This approach is restricted
to isothermal walls with adverse and small favorable pressure gradients
regardless of wall temperature and to flow with large favorable pressure
gradients over highly cooled surfaces. M. Richard Dennison while at
Missile Systems Division of LockheedAircraft Corporation (in a paper
not generally available) extended Van Driest's analysis to include the
effect of pressure gradient upon Reynolds analogy, neglecting, however,
the direct effect of pressure gradient upon the momentumequation. This
assumption appears to be justified only for highly cooled surfaces. The
analysis is further restricted to isothermal walls.

The present analysis attempts to correct the deficiencies of the
aforementioned methods and provides a comprehensivemethod for the com-
putation of turbulent heat transfer in compressible flow for high sub-
sonic and supersonic as well as hypersonic conditions. The effect of
pressure gradient is retained in the integrated momentumequation and a
modified Reynolds analogy is derived. The Stewartson transformation is
used to reduce these equations to a form close to the incompressible
relations. An incompressible friction relation which neglects the
effect of pressure gradient upon the boundary-layer shape factor is
assumedto be valid in the transformed coordinate system and the com-
pressible friction coefficient is then calculated by using a form of
the reference temperature method. The heat transfer is then calculated
from the friction and the modified Reynolds analogy.

This treatment includes the possibility of nonisothermal heated or
cooled surfaces but is limited to favorable and small adverse pressure
gradients. Although dissociation is neglected, variable specific heats
may be approximated through use of a linear interpolation formula.

Heat-transfer rates predicted by the present method are compared
with experimental results and with other predictions.



SYMBOLS

A m

a_b_c

a o

cf

Cp

c V

dpd 2

coefficient in friction law

coefficients in enthalpy-veloc_ty relation

dimensionless stagnation velocity gradient

T i
skin-friction coefficient, w/_ 0cUe 2

specific heat at constant pressure

specific heat at constant volute

parameters given in equations (AI4) and (AI5)

H

k

l

M

m

Npr

function defined by

_.i r(m+l) -i

fO r_ N1
r _u G_

function defined by equation (6)a)

function defined by equation (635)

total entlmlpy,
u2

h+ --
2

enthalpy d_fference, H - Hw

static enthalpy

thermal conductiv Lty

reference length

Mach m _nber

reciprocal exponent in friction law

Prandt [ ntunber bCp
' k



NRe

NRo

NSt

n

P

qw

r

T

U

!]

X

X

Y

Y

Z

F

A

local Reynolds number,
PeUe x

_e

reference Reynolds number,
_O

-%
Stanton n_ber,

0eUeHaw*

reciprocal exponent in velocity-profile power law

pressure

wa]i heat transfer

body radius

temperature

velocity in X-direction in transformed plane

velocity in x-direction in physical plane

transformed coordinate along surface

physical coordinate along surface

transformed coordinate normal to surface

physical coordinate normal to surface

Reynolds analogy factor

constant in density-enthalpy correlation equation

pressure gradient parameter

function defined by equation (37a)

function defined by equation (62)

ratio of specific heats, Cp/C v

transformed thickness of boundary layer

tra_isformed thickness of total enthalpy boundary layer



au

5

5 H

5u

6

A

m

0

T w

transformed thickness of velocity boundary layer

physical thickness of boundary layer

physical thickness of total enthalpy boundary layer

physical thickness of velocity boundary layer

transformed displacement thickness, /0_ (i - _----e)dY

transformed enthalpy thickness, 1 - dY

displacement thickness, 1

enthalpy recovery factor

reduced momentum thickness (eq. (48a))

momentum thickness, 50_ U_e _ - U_e)p_--_ dy

transformed momentum thickness, U_e - dY

function defined by equation (3[b)

transformed thickness, /0 _ U 2

absolute viscosity

transformed dimensionless lengti_,
Z

density

wall shear
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u H* p

enthalpy convection thickness, JO_Tee(l- _-_)_e dy

transformed enthalpy convection thickness, _e - dY

Subscripts:

aw evaluated at wall in insulated case

e evaluated outside boundary layer

O evaluated at reference location (stagnation point) outside

boundary layer

r evaluated at reference location in boundary layer

evaluated at transition point

w evaluated at wall

Primed quantities are evaluated at the temperature T'. A bar over

a quantity represents evaluation in the transformed plane; for example,

c-f, qw' Yw" A bar under a quantity means it has been made dimension-

less with respect to the corresponding quantity at the constant refer-
Ue Pe

ence location or to a reference value. Thus, U _ p _--,
--e \_ --e Po

Pr V

r _--, and so forth.
r _ _,
-- --r _o

THEORY

Derivation of the Transformed Equations

The equations of motion and energ_ in the physical _lane.- The

boundary-layer equations of motion and energy may be integrated across

the boundary layer to obtain the classical Karman momentum integral and

its energy counterpart. See, for example, references 5 and 7. The

resulting equations are for axisymmetric steady flow:
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Momentum:

Energy:

where

i dPe i _] cfPe dx + -- @ -r 2

d_ I_% dPe i dUe i die*
_+ + ----+
dx dx u e dx He* dx -qw

i _ _

r PeUeHe *
(2)

,L o )e = pu
 eUe (3a)

PeUe/

(3b)

(_c)

Equations (i) and (2) are very general wit _in the usual Prandtl boundary-

layer assumptions requiring that the bound_ry-layer thickness be small

compared with the body radius r and that the fluid be composed of a

single constituent gas of arbitrary propernies. Air may be ass<umed to

fulfill the last-named requirement (f the ,_oncentration of its constitu-

ents are fixed (no dissociation).

The momenttm_ and energq¢ equations haw. _ been solved for many cases

of lam,linar flows. Insufficient P_owledge {)f the form of the t_rrbulent

shear_ heat transfer_ and boundary-Layer p:'ofiles _s made analytic

solutions of these equations impossible fo:" t_mbulent flow. With the

aid of certain empirical relations, howeve:', approximate solutions to

the moment',zm equation l_ve been obtained. (See, for example, refs. l_

3, and 5.) From these solutions it is pos:{ible to obtain local friction

and heat-transfer coefficients, the latter being computed through use

cf
of the Reynolds analogy NSt - 2 which i:_ valid for zero-pressure-

gradient flow with unit Prandtl number and constant wall temperature.

For a nonunit Prandtl number_ the relation if altered to the form

NSt : f Np -_-. This problem has been tre_Lted most recently in

reference ii.



A generalized relation between heat transfer and skin friction_
hereafter called the modified Reynolds analogy, maybe obtained by com-
bination of equations (i) and (2) with the result

qw _ cf e {1 _A due- + _ + (4)
PeUeHe * e 2 He* dx \ e/u e dx

A similar modified Reynolds analogy was first derived in reference 6 and

has been used in references 4 and 7. Equation (4) reduces to the con-

ventional Reynolds analogy for zero pressure gradient with an isothermal

wall and Npr equal to i.

Application of the Stewartson transformation.- Mager has shown

(ref. 12) that the Stewartson transformation can be applied to turbulent

flow with unit Prandtl number and zero heat transfer in order to reduce

the equation of motion to its incompressible form. Where the Prandtl

number differs from i and heat transfer is permitted, the transformation

reduces the momentum equation to a form close to but differing from that

for incompressible flow. In the present analysis_ a modified form of

the Stewartson transformation is applied to the momentum equation and

the modified Reynolds analogy relation.

The transformation used herein is given by the following relations:

_x Pr_r(he]i/2dx (5)f
x(x)-=o_o Polo \ho/

- -P- dy
Wx,y) \ oo)Uo po

(6)

(7)

The subscript r refers to conditions at some local reference

within the boundary layer. The subscript o refers to conditions at

some arbitrary reference location outside the boundary layer. Also,

pr_ r = f(x)

po_ o = Constant
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From the definition of the thickness functions (8 and @)and the
relation between the transformed and physical normal coordinate (eq. (6))
the following relations maybe obtained:

_o(_o1_/_
e : 77t,_) (8)

Po(ho]l/2
:_\_/ (9)

where

- d'o u Uld(Y._ (lOa)

where

- _ dy :, (Y)u'_ t,_) ,So _o :Ue (lOc)

(he_ll2 f6H

Afi\_)-- doPo_ dy = (Y) H=H e
(lOd)

In a like manner, the displacement thickness 5" is written as

5" Polhol i/2 -I;0 (ii)

(lla)

In order to account approximately for the effects of variable spe-

cific heats, the following linear relation between density and enthalpy
is assumed to be valid:

_e <_el_ __ =_ _ (_)
P
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where a is a constant adjusted so that equation (12) is exact at the
wall. Fay and Riddell (ref. 13) used a correlation formula similar to

equation (12) but including, in addition, a term in (i - _)4. The
coefficient of this added term was small comparedwith _, and that term
is herein neglected.

Combination of equations (8), (Ii), (12), and the definition of
total enthalpy

[u(x,yi]
H(x,y) = h(x,y) + (13)

2

yields

5"-- _i - _ h--_- Ue2[y 1
(14a)

5* _i He* 32 + (14b)- + C_ - O_ (_

e "e" 2he/ he e" 2h e

where

H* _dY t_H 1 d (14c)_2 _ i =
He* / 0 _e

The momentum equation (eq. (i)) and the modified Reynolds analogy

(eq. (4)) may be transformed to the Stewartson plan through the use of

equations (5) to (14). If the energy equation outside the boundary

layer is

he(X) + [Ue(X_ 2 _ He = Constant (15)

2

the momentum equation is

d__+ + __+

dX @ 2H e

cf po_ o Pe

2 Pr_r Po

(16)



12

and the modified Reynolds analogy is

. I<_ + _ i _e* + I d(_/_) + __+
PeUeHe * Po PrPr _ 2 Pr_r Po * dX _/8 dX

2He - _ _ _JUe (17)

Equation (i6) takes on a form almost llke the incompressible form

with the definition of the transformed friction coefficient _f as

_f = cf po_ ° P_ee (18)

2 2 Pr_r Po

The transformed friction coefficient is related to the transformed wall

shear Tw by the definition

_f Tw
--- (19)

2 PoUe 2

Combination of equations (18), (19), (6), anl the definition of the

friction coefficient in the physical plane (cf/2- Tw/PeUe21 yields the
\ -- -- /

following relation between wall shears

-- Polo ho
Tw - Tw (20)

Pr_r he

In an analogous manner, the transformed heat-transfer coefficient is
defined as

qw qw Pe _o_o

PoUeHe * PeUeHe * PO 3rPr
(21)

The heat transfers in the two systems are related by

qw - prp----_k_e/ qw
(22)

Substitution of definitions (18) and (21) into the transformed momentum

equation and modified Reynolds analogy (eqs. (16) and (17)), respectively)

reduces these relations to their final general form.
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The momentum equation is

+ +--_ I) I+ -
8 He UedX +-- _-_r 2

(2.5)

and the modified Reynolds analogy is

PoUeHe * [ *
_ __+ -_ i e+ i

_" 2 dX _/r_" dX

i 51 Ue2 (i _)
+ _+-- + (_ - i) -

e 2He He Ue
(24)

Equation (23), even for constant specific heat (c_ = i), is not in

general equivalent to the incompressible momentum equation because of

the presence of the term (-_ 52 He* 1 _e)._ He Ue For unit Prandtl number

with zero heat transfer, He* vanishes; thus, the coefficient of the

51
velocity gradient term would take on its incompressible form 2 + --

in that case.

The present analysis for axisymmetric flows can be specialized to

the two-dimensional case by considering r as a constant and dr/dx = 0;
thus_ r is eliminated from the momentum equation.

Relation between total enthalpy and velocity profiles.- In order

to solve the system of equations outlined in the preceding section, it

is necessary to specify velocity and total enthalpy profiles and a fric-

tion law, but it is desirable to investigate first a relation between

total enthalpy and velocity profiles which should have rather general

significance.

For the special case of zero pressure gradient, unit Prandtl number,

and an isothermal wall, the Crocco relation between total enthalpy and

velocity is valid. This equation is

H=a+bu
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Boundary conditions at the wall and stream give the specific relation

H* _ u

He* ue

Pressure gradient, nonunit Prandtl number, _md nonisothermal wall will

each probably alter this relation. In reference ll, for example, with

the assumption of nonunit Prandtl number in the laminar sublayer, the

total enthalpy is found to be a quadratic _mction of velocity in the

sublayer.

Dennison assumed the validity of the _adratic relation

H = a + bu + cu 2 (25)

for the case with nonzero pressure gradient but with unit Prandtl number

and isothermal wall. The coefficients of t_ velocity terms were found

to be functions of the local pressure gradient and the heat transfer

was evaluated from the skin friction by using a relation analogous to

the modified Reynolds analogy of the present report. A multiplication
factor was then suggested to account for nor unit Prandtl number.

Rather than complicate the present analysis by combining the Prandtl

number and pressure gradient effects into t_e enthalpy-velocity relation,

the approach of the present report is to follow Dennison in assuming

that the Prandtl number is 1 and that equation (25) is valid through the

entire boundary layer. The coefficients of the velocity terms in equa-

tion (25) are then evaluated as functions o_ pressure gradient and wall

enthalpy. A correction to account for nonuzit Prandtl number is later

introduced. Boundary conditions for equati/n (25) were such that at
the wall

y =Y =0

u =U=O

and at the outer edge of the boundary layer

y=5

Y=_

u =u e

U = U e

H = He



15

The form of equation (25) and the second boundary condition require

equal velocity and enthalpy thicknesses, that is, 5u = 5 H = 8 and

2_ = _H = A. This restriction is not serious since a unit Prandtl
number has already been assumed; thus equal or nearly equal thicknesses

are implied. Application of the boundary conditions to equation (25)

yields

H* _ u (i - c Ue2_+ c _Ue2/.u-_2 (26a)He* ue He* / He* \Ue]

H* _ U -c +c--

He* U e He*/ He*

(26b)

Equations (26) are assumed to be valid independent of the type of

velocity profiles and the friction law describing the flow. A qualita-

tive check of their validity may be obtained by comparison with laminar-

flow results. Plotted in figure 1 are results of the similar solutions

of reference 14 for zero and favorable pressure gradients and cooled

walls. The quantity _ of reference 14 is a pressure gradient parameter

which is zero for zero pressure gradient and increasingly positive for

increasingly favorable pressure gradients. Plotted also is equation (26ai

for various values of c Ue-_2 from 0 to 1.0, values which also represent
He*

zero and favorable pressure gradients and cooled walls. The quantities

and c Ue---__ are not simply related to one another and the present com-

He*

parison is intended as only a qualitative one. With this qualification

the two sets of curves in figure I show sufficient resemblance in shape

to lend support to the present approach.

With the aid of equation (26b) the thickness functions 52 and

may be expressed in terms of integrals of velocity functions as follows:

2

E 2 ---A i d = 51 + c He---_

Ue2
\ --_

.Idf-  :
H-eeWj _,_} @ + c --_He*

(28)
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where

Definition of Z as

yields the relations

do

Ue2
Z _c

(29)

_2 Tl "@
- + z-- (30)

_/_= l+ z (31)

One more equation is needed to complete the formulation of the

problem. Equation (24) represents the relation between heat transfer

and skin friction in the transformed plane. Another relation between

the same two quantities, one which must be compatible with equation (24),

may be derived from equation (26b) as follo_s:

Consider the derivative of enthalpy with respect to velocity from
equation (26b) evaluated at the wall. This relation is

-
The shear and heat transfer at the wall can, in general, be written

respectively, as

Tw= k,_)r=o (33a)

_ kiltI kf_Hl.... _ ],_j.,,,-,!'_,c_¥JY---'O p ,, ,'.c=,..,
(33b)

because the apparent turbulent shear and heat transfer vanish at the

wall. The values of _, k_ and Cp are not here specified but apply

to a common location. The ratio of shear to heat transfer is easily
obtained from equations (33) as
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_w k Y=O

and, since the Prandtl number has been assumed to be equal to i_

_w

 o±eV 1
Tw He* \dU/y= 0

PoUe 2

(34)

Combining equations (32) and (34) yields

_( zPoUeHe . i - _/_-
(35)

Equations (24) and (35), each a form of the modified Reynolds anal-

ogy, are assumed to be equivalent. A differential equation for Z

results from this assumption. After substitution of equations (30)

and (31) into the result, the following equation is obtained

dZ + Z • + + P - i - c_ He-- "@ i

-2- He* dX He
+

i d-He* dUeA

He* dX U e dX

-0 (36)

where

F-2+ __ __ + +

He _ [2He< He

A _: F _ 1 + _ He___*Z.i= 1 + Hw 51

He _ He + (_-l)lUe2(l
[2_e

He*
oc-- Z--

He y

(3Ta)

He*

He

(37b)

Note that F is a function of Z but that A is not. Finally_ by

using equation (30) the momentum equation (23) is rewritten as
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-- . - - (38)
_ r 2

Equations (36) and (38) form a pair of s_ult_eous nonlinear differ-

ential equations of the first order. The bGundary conditions chosen are

those resulting from the simple ass_tion of instant_eous tr_sition

from l_inar to fully developed turbulent flow; t_t is, _ = _,

Z = Zt at X = Xt .

The special case of constant specific _eats yields the simpler

equations

P=2+ Z _ (39a)
_e e He 7

A = i + ----_ (39b)
He e

I dHe*
The terms in have been retained in equation (36) in

He* dX

order that the restriction to isothermal walls may be relaxed to include

Hw = Hw(X ) . The assumption is made that the gross effects of a non-

isothermal wall are accounted for in this eqJation without the necessity

of further modifying the enthalpy-velocity r_lation (26a) or the depend-

ent relation between qw and _f (eq. (35)).

Application of a Simple Velocity Profile

and Friction Law

Assumption of power velocity profile anl friction law.- In the

absence of detailed knowledge of the turbulent velocity profiles and

friction law for compressible flow about a b)dy of revolution with

streamwise pressure gradient, certain assumptions are made. These are:

(I) The effect of compressibility is completely accounted for by

the Stewartson transformation; thus, incompr._ssible flow relations may

be assumed to be vali_ in the transformed plane.

(2) The effect of pressure gradient upo:1 the velocity profile and

friction law is negligible; thus, zero-pressure-gradient relations may
be used. The incompressible, zero-pressure-gradient relations chosen

for the present analysis are
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({)lJnUe (40)

(4l)

where Am is assumed to be constant. Velocity profiles of the form of

equation (40) have been observed in flows with pressure gradient. (See

ref. 15.) The Ludwieg-Tillman friction law of this reference is of the

form of equation (41) but with Am as a function of shape factor.

Since the shape factor is not altered seriously by favorable pressure

gradients but is a strong function of adverse pressure gradients, the

present analysis is limited to favorable and weak adverse pressure

gradients.

(3) The velocity profile and friction law (eqs. (40) and (41),

respectively) are unaffected by the curvature in the axially symmetric

case so that these two-dimensional relations may be assumed to be valid.

With the assumption that the boundary-layer thickness is small compared

with the body radius, the local curvature due to the axial symmetry

would be expected to have a small influence upon the local friction law

because, locally, the turbulent exchange should far outweigh the momentum

change caused by the varying cross-sectional area. On these physical

grounds the assumption of no effect of body radius upon profiles and

shear law seems to be justified. Some methematical justification might

be seen from the following: If a turbulent analog to the laminar Mangler

transformation were employed, equations (40) and (41) would be assumed

to be valid in the resulting two-dimensional flow. It can be shown

that such a procedure leads to an expression for the physical (three-

dimensional) friction coefficient equivalent to that obtained by the

present method, that is, the expression which results from combination

of equations (5), (6)_ (18), and (41)_

cf Pr_r poi_o_I/m i_D _-I/meUee (42)
2 - Am po_ O pe\_e/ \_e /

Thickness functions.- For the velocity profile of equation (40),

the thickness functions of equations (lOa), (]la)_ and (29) may be

evaluated

g
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_i _ i

n+ i

n

A

Y

(n + l)(n + 2 _

n

A (n + 2)(n + 3)

51 n+2
n

8 n

8" n+ 3

n+ 1

(43)

Differential equations.- Equation (41) is substituted into the

momentum equation (38) and, after some rearranging, the result is

m+l m+i __i

d(8) m /m + l_(_e dUe i dr --E- (m + _/O°Ue'_ m\_o ]+ +-- :

The modified Reynolds analogy equation (36) becomes

dZ _ i &He*
+ Z + +

dX L \ _o / He* dX

r - i - He* g i + He*He Ue 85(

m+l

The dependent variables are now (_) m ant. 7,.

- o (45)

Nondimensionalization.- Equations (44) and (45) may be made dimen-

sionless with respect to the constant referc_nce conditions Po, Do,

_o' ho, and a constant reference length Z, Dimensionless quantities

are then, for example,
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-e

Ue Pe
p _------

_r

_'o

h
--e

he r x

ho - _ -

x

- x=--= pl.L
-r-r --

Equations (44) and (45) become

d_ at {)r

fAm (_)_l(m _)
dZ+z l+
d_

i dHe*
+

He* d_

1 d_* A dU_
He* d_ U_e d_

-0

(46)

(47)

where

m+l
-- i

-= Ro (48a)

po2_oZ
NRo _= (48b)

_o

The quantity e is a "reduced" momentum thickness, and the Reynolds

number dependence of the equations is implicit in its definition and the

Reynolds number enters these equations in no other way. Equations (46)

and (47) are nonlinear differential equations through the dependence

of the quantity r upon the dependent variable Z. Step-by-step numer-

ical solution is required and the solution is hereafter termed the
"exact" solution.
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Evaluation of Skin Friction an(_Heat Transfer

Whenthe momentumthickness parameter e and the factor Z have
been computed, the skin friction and heat transfer maybe obtained as
follows: Combination of equations (41) and (48) gives

1 1 1
_f
___(NRo)_-T= Am(_e)-_(_,) m+l (49)

In the physical plane, from equations (18) and (49),

1 1 1 p_,

) -r-r
2 -Pe

(5O)

Then, for unit Prandtl number, from equations (21) and (35)

i

qw (NRo) m+--_
PeUeHe * k/ _e L2 (NRO)

(51)

For Prandtl number other than one, the enthalpy driving potential for

heat transfer is Haw - Hw, and this substitution for He* in equa-

tion (51), along with the empirical Prandtl number correction, gives

the result

NSt (NRo) m+---_ (i Z e__)(Npr) -2/3 -Dr_-r_f= _ NRo)0
-e

(52)

where

-qw

NSt _ PeUeHaw.

Special Cases

Solution for He* equal zero.- FOr the case He* equal to zero

with arbitrary pressure gradient and constart specific heats, equa-

tions (46) and (47) may be solved in closed form. The term i dHe*

He* d_
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in equation (47) appears to be indeterminate but may be seen to be zero

since for any constant value Hw _ He this term is identically zero

regardless of how small the difference H e - Hw _ He* is allowed to

become.

The differential equations describing this flow are, from equa-

tions (37), (46), and (47),

i

=-T + + - 8 = Am
r

m _\ (r - i) ___ _ A dU-e

dZ+ z dt $ dtdt ]--e

(53)

(54)

r = 2 + L (55a)

A = l+--= r- i (55b)

The thickness ratios -- and -- were evaluated for power profiles

and are given in equations (43). Since n was assumed to be constant,

these ratios, F, and A are then constant, and equations (53) and (54)

are linear and may be integrated in closed form. The momentum equa-

tion (53) may be written after some manipulation as

d I (rUeF m+m)_- (m_)m+l P(m+l) -idt __ = Am (r) m (_e) _ (56)

Equation (56) is integrated to give

_=et

m (r) m U_eru_ I -
\ e/t m+ 1 -_ t

+

_-_A

(rUer) m (r_) m (Ue) m

at

(57a)
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In the special case @t = tt = O,

"t (r) m m
i

0 = Am m+l P(m+l)-i

(r) m (Ee) m

at

(5_)

The modified Reynolds analogy equation (54) is of the form

dZ A dUe
-- + Zfl(t) -
dt _ dt

and the solution is

Ifz : e ffl(t)dt

where
i

() m( I --_I
fl(t) - Am U-e + . r - i a_

e _ at

In general, the integral j'fl(t)dt will lave to be evaluated numeri-

cally after completion of the solution of Jhe momentum equation. For

the special case ®t = tt = O; however, th( solution for e yields

i

Am(U_e)- Z m

® m+ i

m+l P(m+l] -i

m m

t m+l (U_e)F(m+_ )-i
(__)m m

m d log e F

m+ i dt

dt

where

t m+__Zi r(m+l) -i

F = F(t) - IO (r) m (U'_e, m dt

Then

(P - i) log e U_
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and

m (I _)(
+ -(r-l)

effl( Id : (Flm+l 4) (591

Equation (59) is substituted into equation (58) and the following equa-
tion is obtained:

The constant K must be set equal to zero in order that equation (60)

leads to a stagnation-region solution consistent with that developed in

the appendix. The limits on the integral are set from zero to _, which,

in conjunction with K = O, allows Z to approach zero as expected far

downstream on a blunted cylinder or cone as approaches zero.
d_

The final result is

r-i (F) :J{A

(r)

at (61)

Equations (57b) and (61) provide explicit solutions to the momentum and

modified Reynolds analogy equations for the case @t = It = 0 for

He* = O, which, for unit Prandtl number and recovery factor, corresponds

to an insulated wall.

Other special cases.- The special cases of the flat plate, the

cone in supersonic flow, and two- and three-dimensional stagnation

regions are discussed in the appendix. The stagnation-region solutions

have value in establishing initial conditions for the complete solution

of equations (46) and (47) when the flow is assumed to be turbulent from

the stagnation point. The results for two- and three-dimensional stag-

nation regions are given in the appendix (eqs. (AIO) to (AIS)) and plots

of the variation of Zo with the cooling ratio HwIH e are shown in

figures (2a) and (2b) for _ = I, m = 4, and n = 7. Although the

results (eqs. (AIO) to (AIS)) are also valid for heated walls HwIH e > i,
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only the cooled-wall results are shown. For stagnation flow, the reduced
m-1

momentum thickness 8 varies directly with _ m , or in the physical
m-1

plane, 8 varies directly with x_-_. The momentum thickness at the

stagnation point is zero, a consequence of the assumed relation between

cf and 8. The term Z is independent of x in the stagnation region.

Approximate Solution

The special case of flow with pressure gradient but zero enthalpy

difference He* was shown to give simple clgsed-form solutions for

et = _t = 0 and constant specific heats. (See eqs. (57b) and (61).)

An approximate method for the general case b ised on this special case

is now developed.

The nonlinearity of equations (46) and (47) is caused by the depend-

ence of F upon Z. (See eq. (37a).) Figure 3 shows plots of the

variation of F with cooling ratio Hw/H e for various values of Z

with _ = 1 and n = 7. The upper limit of Z of 0.8 was chosen since,

for this value, the Stanton number is zero for a finite friction coeffi-

cient. (See eq. (52).) A value of Z in excess of this maximum would

imply heat transfer in a direction opposite _o that of the heat-transfer

potential Haw* , a behavior not expected on ]_hysical grounds except per-

haps where Haw* passes through zero. Figtu'e 3 shows that F is not

a strong function of Z for given Hw/H e. For Hw/H e approaching

zero, the dependence is a maximum; for unit Hw/He, the dependence dis-

Similar behavior would occur for hot walls (Hw/H e > 1.O)" andappears.
%

nonunit _ is not expected to alter this dependence seriously.

The approximation assumes that

cialized for an average value of Z equal to 0.4. Thus,

(r)z:o.4 _=r : 2 +

P is g_ven by equation (37a) spe-

+ - 1) + He* 8

He e [2He He He

(62)

Equation (62) is assumed to be correct for ar arbitrary value of n.

The momentum equation (46) is linear with _ substituted for P and

may be integrated upon the neglect of _ with respect to d-_-" The
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dF d_ and _,d_ both of whichderivative d-_ is seen to depend upon d(Hw/He)

are assumed to be small. Because dUe approaches zero downstream on
d_

blunted cylinders or cones_ the approximation may fail in these regions.

However, with this assumption and some manipulation, equation (46) is

rewritten as

_ I_ (rUe_)m+_] A /m+ i_ m+lm l_(m+l) -i= m\_] (r) (Ue) m (63)

which is identical to equation (56) except for the substitution of

for F. Solutions are therefore given by equations (57a) or (57 b) for

appropriate initial conditions with F replaced by _.

The energy equation (47) is solved in the same manner. When F

is replaced by _, equation (47) becomes a linear differential equation

of the form

d__Z+Zfl( ) = f2( ) (64)
d_

where now

i

fl(_) Am(U) m(l _) (I He* _)i dU--e
- + + dHe* _ - i - cL

He* d_ He d_

(65a)

_ A d]_e I dHe* (65b)
f2(_) U d_ He* d_

The general solution is

Z = e e f2(_)d _ + (66)

As in the special case, equation (66) must be evaluated numerically for

arbitrary transition because of the form of the function @ (eq. (57a)).

For the special case of @t = _t = O, however, a simple analytic solu-

tion may again be derived. Thus, when the method used in the ease

He* = 0 is followed here, the result is
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F-z-_ He* _;r

Z (_e) __ _ lO_ m {l+ _'1

He*(F ) (U_e) He Z

i d_
He*

(67)

In the interest of simplicity, the case of arbitrary transition

(eqs. (57a) and (66)) for the approximate solution will not be consid-

ered further. The approximate solution is _iven by equations (57b)
and (67) and is therefore restricted to the initial conditions

_t = _t = O, Zt = Z o or fully developed turbulent flow from the

leading edge.

Stagnation-region solutions for the approximate case may be obtained

from equations (57b) and (67). For a three-dimensional stagnation

region,

1 m-i

|(Pr__r] _ + 2m
L\ -/ o m+ 1

(68)

Z =Zo =
%

1 + ($ T+ _ 0 T + -- +

e oh k m+ i

and for a two-dimensional stagnation region,

1 m-1

-Or_-r) _o + m - i
m+ i

(69)

(70)

Z = Zo =
%

_+ _0 _ +

1 + O_kHe /o X X
m - 1

m+l

(71)
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The three- and two-dimensional stagnation values of Zo as given by

equations (69) and (71), respectively, have also been plotted on fig-

ures 2(a) and 2(b), for m = l, n = 7, and m = 4 and do not differ

significantly from the appropriate (negative root) values for the

"exact" solution evaluated in the appendix.

For clarification of the two methods discussed herein, a summary
is presented in table I.

Reference Conditions

The constant reference conditions Po, _o have been used as the

pertinent properties for the flow in the transformed (incompressible)

plane. This "incompressible" reference is assigned to the stagnation

point in the case of a blunt body and local stagnation conditions for

bodies with sharp leading edge. This requirement specifies isentropic

flow along the body streamline in the inviscid flow for the latter case.

The reference conditions in the boundary layer Or, _r are some-

what more arbitrary. The original transformation (ref. 9) for laminar

flow used the relation _ = l, whereas reference 14 used the wall con-

ditions Dw,_w. The choice of reference conditions in the laminar case

influences the form of the transformed equations but not the solutions

in the physical plane (except through the viscosity law chosen), since

the solutions do not depend upon any assumptions as to the nature of

the flow in the transformed plane. Because the turbulent solutions

depend upon the assumption that incompressible relations are valid in

the transformed plane, the reference conditions need to be carefully

specified as follows.

Tw method.- If the laminar shear at the wall was considered and

then transformed, this would give

TW W
W

_ Ow_w he 8f _

Polo h° _o _-yJw

(72)

laul
If the quantity o_j w were interpreted as the transformed wall

shear T--w,then equation (72) would be
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Po% ho T (75)
Tw - _wl.Lw he w

Comparison of equations (75) and (20) indicates that the reference con-

dition, for this interpretation, must be the wall condition. For the

flat plate this comparison gives, from equation (A6),

m m-i

cf_ IPw_whm+l (_e\ r,+--T

T' method.- In reference 16, an interr_ediate temperature method

for turbulent flow is described. This meth_,d has been adapted to the

flat-plate inverse power friction law as follows: Assume

of' = k-J-)1 P.Ue 2
2

where K I is the coefficient of the equivalent incompressible law and

p' and _' are evaluated at an intermedia',e temperature T'. Then

i m i

, ( oUeX1cf = cf - K I

If for incompressible flow

/PUeX'

_f = KII- _-

i

m+i_

Then at the same Reynolds number

m .-

-Q Vel \ ej
(75)

The intermediate temperature is given for a r by reference 16 as

T ' 2 fTw lh
- i + 0.035M e + 0.45 -- -

Te \Te -j
(76)
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The wall reference method (eq. (74)) is comparedwith the inter-
mediate temperature method (eqs. (75) and (76)) in figure (4) by means
of plots of the variation of cf/_f with Machnumberfor wall-to-
stream-temperature ratios of 0.2, i, and 5. For this figure it was
assumedthat the surface was at a temperature of 1,500° R for all Mach
numbers, a fairly realistic condition for a reentry vehicle. Values of
7 of 1.4 and m of 4 and the Sutherland viscosity law were used. For
this case it is apparent that the two methods are significantly
different.

The sametwo methods are comparedfor the insulated wall case in
figure 5 with a typical wind-tunnel condition imposed, namely, To

equal to 540° R. A recovery factor equal to (Np_ 1/3 was used with
Npr equal to 0.72. Also shownon the figure are the experimental data
of Coles (ref. 17) and Chapmanand Kester (ref. 18) taken from refer-
ence 16. There is sometendency for the data to support the T' method
over the Tw method. Further support for use of the T' method is
found in data recently obtained by Tendeland (ref. 19) for flow with
heat transfer.

The assumption is nowmadethat the flat-plate T' method is cor-
rect for arbitrary pressure gradient. The reference conditions for the
present method are computedby requiring the equivalence of the T'
compressibility correction to that of the present report (eq. (A6)).
The result of equating equation (A6) with equation (75) is

PrPr _ P'{P' i/m
Polo po\_-_o) (77)

with p'

ness, the

and p' evaluated at T' (eq. (76)). However, for complete-

Tw method, given by equation (74), obtained from

PrPr Pw_w

PoPo PoPo
(78)

is evaluated as an alternate.
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RESULTSANDDISCUSSION

Method of Calculation

Equations (46) and (47) for the "exact" method and equations (57b)

and (67) for the approximate method were solved for various configura-

tions on the IBM 704 card-programed computer at the Langley Aeronautical

Laboratory. In order to simplify the programing, the equations were

rewritten with the physical dimensionless ccordinate x as the independ-

ent variable as follows:

dO+(m+l rd_ _dr ½ -_
-- + - e = Am _Or__r (79)_dx \_J __ -- r

m
dZ m
--+ Z

1

(_pr__r)(he)_(l +_)+ iHe. dHe*dx

l - CL

He + He* dx U dx
-0 (8o)

for the exact case, and

i
F

(r_) m (!e) m

(81)

Z

- He_ _ _ -_

(U-e) He _ He *(F)m+l J_A dUe

He.(F)_I i+ (_e) F-I-_ e_j-_-_

1

He*

dHe*\\

(82-)

for the approximate case where

_(_+l)-i
m

(83)
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Because all available data were obtained in the moderate tempera-

ture regime, the program was specialized to the case m = 1 (constant

specific heats) and flow properties outside the boundary layer evaluated

in the program from the pressure distribution by simple isentropic-flow

relations with constant 7. The viscosity was assumed to be given by
the Sutherland law

T3/2

T + 198.7 ° R

The program was arranged for arbitrary selected values of the constants

Am, m, n, 51/8, _I_, and Npr. The enthalpy recovery factor _r

was assumed to be equal to (Npr) 1/3

was computed from

and the enthalpy difference Haw*

Haw* = He + _rUe

For purposes of comparison, both T' and Tw methods for computing

compressibility effects were included in the program.

Unless otherwise specified in the subsequent discussion, the fol-

lowing constants were used:

Blasius law:

A m = 0.013 m = 4

i/7th-power velocity profile:

n = 7
51 _9 __ 5

7 X 4

7 = 1.4 Npr = 0.72

Determination of Effect of Initial (Transition) Conditions

In order to determine the effect of various transition conditions

upon solutions of the "exact" equations, the discussion which follows

assumed instantaneous transition from laminar flow at some location _t"

For this discussion, the reference temperature as evaluated by the

T' method (eqs. (76) and (77)) is used.
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No exact transitionboundary condition_ are known. Onereasonable
conditions is to assumethat momentumis corserved; thus elaminar
equals 0turbulen t at _xt. An analogous p_ocedure to determine Zt
is to conserve the enthalpy convection thickness @. The purpose of
figures 6 to 12 is to indicate the degree to which the results are
affected by various transition boundary conditions.

qw
In figures 6, 7, and 8 are plotted 0/Z, Z, and

Tw _ Taw, respec-

tively, as computed for a hemisphere in a _ = 5 stream. The test is

reported in reference 20 as run 57. Transition was assumed to occur at

o o o  o.uo tot oa  ro r ato
t

laminar value (computed from the similar solutions of ref. 14 by using

a technique similar to that of Stine and Wanlass (ref. 21)). The term

Zt was allowed to vary for each value of Et" For each _t the choice

of Zt has little effect on the solutions for Z and qw/(Tw - Taw )
I

except in the immediate vicinity of _t" THere is no noticeable effect

upon e/Z at all.

The ch°ice °f _t and (_)t has greater influence upon the results,

a_ may be seen in figures 9 to II. Since the choice of Zt was shown

to influence only weakly the solutions for given x t and l_-8] , for
\L/t

these three figures Zt was set equal to th_ value of Z at x equals

_t obtained from the solution for the stagnation initial conditions

(_t = (_)t = O, Zt = Zo)which are also shocn in figures 6 to 12. For

given xt, the choice of (8) strongly aff__cts the solutions locally,
t

the effect diminishing downstream. In addition, increasing x t increases

the effect of varying (_ ; that is, the effect is felt further down-
t

stream, as expected.

The data obtained in reference 20 appea- to favor the solutions
_%

with large IV_ with Zt fixed near _x _ 0.8 and to favor the solu-
t

tions with (_)= (_) at x_t = 0.6 ._nd 0.8 in the regiont laminar

x> 1.0.
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The results of similar calculations for heat-transfer coefficient

on a flat-faced body are shown in figure 12. The conditions are those

of run 61 of reference 20. Transition was assumed to occur at x = 0.2,
--t

0.4, and 0.6 for various values of ___(_)t" Because of the prevlously

shown negligible effect of Zt, the values of Zt were chosen in the

same manner as for the hemisphere (figs. 9 to ll). Figure 12 shows the

same behavior for the flat-faced model as found for the hemisphere,

that is, theeffectof I_ decreaseswithincreasing _ and, when

t

_t = 0.2 or 0.4, does not appear to be important a moderate distance

from the assumed transition point. The experimental data for this flat-

faced body are plotted in figure 12 and appear to favor transition at

equals 0.4 with (_ equal to 0.00072 or 0.00108._t
t

Some investigators have advocated starting the turbulent calcula-

tion from the stagnation point with finite initial momentum thickness.

(See, for example, ref. 5.) They reason that a nonzero boundary-layer

thickness must exist at a stagnation point, such as the laminar value

which is easily calculated. Solutions for the present method were

(e) for xt equal to zero for bothobtained for a wide range of T t

spherical and flat-faced bodies. These results showed that the perturba-

tions in (_-), Z, and qw/(Tw- Taw ) caused by the nonzero (T)t die

out extremely rapidly and are indistinguishable from those for (@] = O,
t

_t = 0, downstream of x = 0.25. These results have not been shown in

figures 9 to 12. Since the flow in the region close to the stagnation

point is expected to be laminar, it must be concluded that for all

practical purposes the assumption of finite (_I at the stagnation
\L/ t

point for the present method is practically equivalent to the assumption

zoro
Figures 6 to 12 show that the "exact" solution started at the stag-

nation point fairly well represents the solutions begun at an assumed

transition point, particularly for early transition. Therefore, this

solution is useful when the location of transition is unknown. However,

use of stagnation-point initial conditions does not imply that turbulent

flow exists over the whole surface but merely assumes that the turbulent

flow downstream of transition is approximately equivalent to a hypothet-

ical turbulent flow which originates at the stagnation point.
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Comparison of Present Method W_th Experiment

Results of application of the present _ethod are shown in figures 13

to 19 corresponding to experimental data presented in references 20, 22,

and 23. Both exact and approximate solutiors were evaluated with the
calculation restricted to the isothermal-wall case. This condition was

very nearly met in all the experiments discussed. The values of Hw/H e

chosen were approximate means of the local values and are indicated in

table II, a summ_ry of the experimental dats used in the figures. In

all cases the experimental pressure distributions presented in the refer-
ences were used.

The exact method was evaluated for stagnation initial conditions

_t = et = O, Zt = Zo) and, for one transition case in which _t was

chosen from the experimental data, _t was assumed equal to the laminar

value and Zt was arbitrarily set equal to its value at _ = £t as

given by the solution for stagnation initial conditions. Use of stag-

nation initial conditions was implicit in the approximate solution.

Plotted in these figures is the variatign of the heat-transfer

qw with the dimensionles3 surface distance _ _ _,coefficient Tw _ Taw

The reference length is the body radius for _he hemisphere and flat-

faced body of reference 20 (figs. 15 and 14) and the hemispheres of ref-

erence 22 (figs. 15 and 16), and the nose radius for the sphere cones of

reference 25 (figs. 17, 18, and 19). In each case the (a) parts of the

figures correspond to the T' method, and t?_ (b) parts of the figures,

to the Tw method.

Examination of the figures reveals the following:

(I) In general, the results using the [!' method for cf/_f are

slightly higher (generally less than 5 percent higher in the peak heating

region) than those with cf/_f given by the Tw method. The data show

a slight preference for the T' method.

(2) The approximate solution gives resWts within 5 percent of

those of the exact solution using stagnation-point initial conditions.

Neither of these methods predicts completely the experimental data,

although most trends not too close to the transition region are satis-

factorily predicted.

(3) The exact solution with transition _nitial conditions predicts

the measured peak heat-transfer data within 8pproximately lO percent in

those cases where transition appears to have begun upstream of the
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theoretical peak (figs. 15, 18, and 19). In figures 15 and 18, the

location of the theoretical peak is slightly upstream of the experi-

mental location. When transition appears to have begun close to the

predicted peak heating region (figs. 13, 16, and 17), agreement at the

peak may be either good (within 15 percent, fig. 16) or poor (figs. 13

and 17). In these three cases the peak heating data are thought to be

transitional.

(4) Downstream of the peak heating regions agreement is generally

within i0 percent except for the extreme downstream locations where

heating rates are low and percent differences between theory and experi-

ment tend to increase (figs. 13 and 15 to 19). An exception is the flat-

faced body where the predicted heating rates are 20 to 25 percent greater

than the experimental rates over the entire face.

(5) Using a transition initial condition in preference to stagna-

tion initial conditions generally improves or leaves unchanged agreement

between "exact" theory and experiment except in two of the cases where

the peak heating data are thought to be transitional. (See figs. 13

and 17.)

In regard to these comparisons, caution must be exercised in quan-

titatively comparing data and theory as a i0 to 20 percent uncertainty

is common in heat-transfer measurements. The question of choosing tran-

sition conditions for the present method leads to further uncertainty.

Although the technique of requiring conservation of momentum thickness

may appear to be logical for an instability-induced transition, a

roughness-induced transition might suggest a discontinuous momentum

thickness. Figures Ii and 12 demonstrate how transition with 8t

larger than 81amina r can lead to better agreement between theory and

experiment for the same data as in figures 13 and 14, respectively. In

both of these cases, transition may be roughness induced. (See ref. 20.)

Comparison With Other Methods

Comparison with Dennison's method.- Tlm method of Dennison has

been evaluated for the seven experimental configurations previously

discussed. A simplified form which Dennison states is valid only on the

forebodies of blunted cones and cylinders and invalid far downstream has

been used along with a Prandtl number correction in the modified Reynolds

analogy suggested by Dennison and used also in the present analysis.

The results are shown in the (a) parts of figures 13 to 19 in each case,

although Dennison's method is not dependent upon a reference-temperature

compressibility correction. The comparisons made in the following para-

graph refer only to the present T' method and Dennison's method.



38

The method of Dennison appears to predict heating rates about as

well, in general, as does the present method with stagnation initial

conditions. The present method with transition predicts the peak heating

rates much more accurately than does Dennison's method for the configu-

rations of figures 15, 16, 18, and 19. For the hemisphere at M = 5

(fig. 13) and the sphere cone (fig. 17), the Dennison predictions are

closer to the peak heating rates than the present solutions, which over-

predict the experimental peak heating rates However, these measurements

appear to be in a transition region. Heatil_ rates on the flat-faced

body at M = 5 (fig. 14) are predicted by Dennison's method with excel-

lent accuracy.

Comparison with incompressible flat-plate formula.- In order to

provide a familiar reference curve in figures 13 to 19, the heat-transfer

rate was computed by using the Blasius incor_ressible flat-plate law and

Reynolds analogy with the assumption of no c_ffect of compressibility

upon skin friction. The equations are

cf ( )-_:m : O.0296 NRe _'
2

qw

Tw - Taw

2

CpPeUe (Npr_j-_ cf2

The results of using these simple relations are also plotted on the

(a) parts of figures l} to 19. This method however, is independent of

compressibility.

Although these results agree with the more complete results of the

present analyses as well as with Dennison's method and data in some

regions, differences are rather large over most of the surfaces. The

occasional agreement is the result of compersating effects. The present

method includes the effect of the favorable pressure gradient upon

momentum thickness in the momentum equation. This tends to increase the

skin-friction coefficient over the comparable flat-plate value. On the

other hand, the effect of pressure gradient upon the Reynolds analogy

factor is such that the ratio of heat-transler rate to skin-friction

coefficient is reduced below the comparable flat-plate value. In some

regions these effects approximately cancel _nd agreement between the

pressure gradient and flat-plate solutions lesults, particularly for the

flat-nosed body. (See fig. 14.) In other _egions one effect predomi-

nates and the solutions do not agree at all. The compressibility cor-

rection factor included in the present methcd further alters the compari-

son. Because of this fortuitous part-time _greement, the incompressible

flat-plate method is not suitable for blunt-nosed bodies. In the fig-

ures discussed here, this method yields heat-transfer rates generally

higher than the data or the results of the ;ressure-gradient methods.
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The method of Bloom and Martellucci.- Bloom and Martellucci (ref. 6)

use the integrated momentum and energy equations to derive a modified

Reynolds analogy relation analogous to that of equation (4) of the pres-

ent report. This relation is used in conjunction with an inverse power

friction law, power velocity profile_ reference-temperature compressibil-

ity correction_ and a relation between total enthalpy and velocity inde-

pendent of pressure gradient in order to obtain the heat-transfer rate.

The results of these calculations are not included in the present report

but were shown in references 4 and 6 to underestimate seriously the

turbulent heating rates on a blunt body. This behavior must be attrib-

uted to the form of the enthalpy-velocity relation used. By not including

the effects of pressure gradient in the total enthalpy profile, a modi-

fied Reynolds analogy factor qw/Tw which depends directly on velocity

gradient is obtained, which is analogous to equation (4) herein. This

relation shows that positive velocity gradients tend to reduce drasti-

cally the Reynolds analogy factor and yield low heating rates. When the

pressure gradient is included in the enthalpy profile, however, as in

the present analysis, the modified Reynolds analogy factor depends

instead upon an integral of the velocity gradient (for example, eq. (67)

for Z), and thus the effect of pressure gradient is reduced. This

result is apparent in the generally satisfactory agreement between meas-

ured heating rates and those predicted by the present method as shown

in figures 13 to 19.

Discussion

Choice of initial conditions for the exact solution and validit[
of the approximate solution.- In a previous section it was shown that

the choice of initial conditions at the transition point did not seri-

ously affect the predicted heat-transfer rates a moderate distance down-

stream of the assumed transition point. With no real knowledge of what

transition conditions to use, figures 13 to 19 show that use of stagna-

tion initial conditions can lead to reasonably accurate predictions of

the turbulent heating rates a moderate distance downstream of the tran-

sition point or region. It follows, then, that the approximate method

presented herein may also be very useful, in spite of the fact that it

requires stagnation initial conditions. Results of using this method

also compare very favorably with the experimental data.

If it is desired to utilize high-speed computing equipment in the

calculation of turbulent heat transfer by the present method, the exact

solution should be employed as it offers the generality of arbitrary

initial (transition) conditions as well as exactness (within the frame-

work of all the other assumptions). Where no such equipment is avail-

able, the approximate method offers a convenient alternative restricted

to stagnation initial conditions. One might improve the accuracy of
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the approximate methodby a more judicious choice of a meanvalue of Z
used in evaluating _ (eq. (62)) but the need for doing so is not
apparent in the present results. Caution must be used in applying this
approximation, however, as it was derived by neglecting dZ/d_ with
respect to dU_e/d_,a questionable assumption in the essentially zero
pressure-gradient downstreamregions of blu_ted cones or cylinders. In
a subsequent section, this error is showntc be small for one case - a
spherically blunted cylinder in shock-tube flow.

An alternate friction law.- In order to determine the effect of

changing the friction law, the heat-transfer coefficients for the hemi-

sphere and flat-faced bodies at Mach number of 5 (ref. 20) were com-

puted for the friction law
i

0

given in reference 3 and attributed to Falk_er (ref. 24). Results of

these calculations are shown in figures 20 and 21 for hemispherical and

flat-face bodies, respectively. Also shown are the results obtained by

using A m = 0.013 and m = 4 (modified Blasius law) as in the previous

discussion, and the experimental results. Theoretical results are shown

only for the special case where the flow is considered to be turbulent

from the stagnation point (_t : et = O, Zt = Zo) for the exact solution

(T' method).
l

For a flat plate in incompressible flow, the modified Blasius law

is considered to be a good approximation to the Prandtl-Schlichting

logarithmic law for Reynolds numbers based on surface distances of from

105 to 107, and the Falkner law may be used to approximate the loga-

rithmic law for Reynolds numbers of from 106 to i0 I0. Approximate

Reynolds number limitations such as these may be considered to be appro-

priate for the calculation of heat transfer 0y the present method. For

the experiments considered herein, Reynolds aumbers based upon local

external fluid properties and surface distance from the stagnation point

never exceeded 2.5 × 106; thus, the Blasius [aw should be appropriate.

Figure 20 for the hemisphere shows little difference in the two results,

although the B_asius result is slightly closer to the data downstream

of the transition region. Figure 21 for the flat-faced body shows that

the Falkner result agrees with the data very closely, whereas the

Blasius result averages about 20 percent high. This behavior remains

unexplained.

If it were desired to compute heating r_tes by the present method

to a body for which the local Reynolds number based upon surface distance

covered both of these ranges, the calculatiou could begin with the
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Blasius law carried up to an appropriate location and then continue with
the Falkner law for the remainder of the surface, with the requirement
that @ and Z were continuous at the "switchover point." The heat-
transfer rate would be discontinuous at this point but could easily be
faired to obtain a turbulent heating rate continuous in x.

Bloom and Martellucci (ref. 6} used an inverse power friction law
with Am equal to 0.006361 and m equal to 5.92, a law very similar
to the Falkner relation. They also claimed to have computedone case by
using a Blasius law (Am = 0.0128, m = 4) and, when the results were
compared, they found-a difference of nearly a factor of 2. They appear
to have used a value of Am equal to 0.0225 in the actual calculations,
however, and its use would account for the discrepancy.

Validity of the approximate method in downstream regions.- The

accuracy of the approximate solution in the downstream region of a

spherically blunted cylinder was tested for a hypothetical shock-tube
situation. The model was assumed to be one-half inch in diameter, and

the traveling shock was assumed to move at a Mach number of 6.5 relative

to the fixed wall and based upon the speed of sound of the undisturbed

air, which was assumed at room temperature (540 ° F) and a pressure of

40 centimeters mercury absolute. Local flow conditions around the model

were found by assuming a modified Newtonian pressure distribution;

stagnation conditions were computed from the charts of reference 25.

For convenience in computing the heat transfer, the flow external to

the boundary layer was assumed to be isentropic with 7 equal to 1.2.

The wall temperature was assumed to be equal to room temperature, a

valid assumption for the short-duration tests inherent in shock-tube

use, and the computed stagnation temperature was 6,318 ° R.

Figure 22 shows a plot of the variation of the ratio of local heat-

transfer rate to stagnation heat-transfer rate (computed by the method

of ref. 13) for exact and approximate solutions with x _ x/Z, where

is the body radius. 0nly the T' method is shown, and only stagnation
initial conditions are chosen for the exact solution. Equation (76)

for T' is assumed to be valid independent of 7. The region _ _ 1.57

corresponds to the hemispherical nose, and the region x _ 1.57 repre-

sents the downstream cylinder. Figure 22 shows that the approximate

solution differs from the exact by less than 5 percent over the entire

surface considered, _ _ 3.0. This result is surprising in the region

where _ _ 1.57, since in this region the Newtonian velocity gradient

is zero whereas the gradient of Z is still finite. In obtaining the

approximate solution, dZ/d_ was neglected as small compared with

dU_e/d_, an assumption which is not true for x _ 1.57. This relative

insensitivity to the neglect of the dZ/d_ terms in the downstream

regions somewhat widens the applicability of the approximate solution

presented herein.
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CONCLUDINGREMARKS

A method for computing the turbulent heat transfer to bodies in
high-speed two-dimensional and axisymmetric flow fields was derived
from the integrated equations of the boundazy layer. The derivation
utilized a Stewartson-type transformation o5 the equations, the assump-
tion of a quadratic dependenceof total ent_alpy upon velocity across
the boundary layer (in which the coefficients of the velocity terms are
functions of pressure gradient), and a compressibility correction for
skln-friction coefficient based upon flat-plate experimental data. The
method was applied specifically for inverse-power-law velocity profiles
and friction coefficients. Exact and approximate solutions were derived
for these differential equations wherein the exact solution was valid
for any initial conditions, and the approximate solution required assump-
tion of a fully developed turbulent flow from stagnation point or leading
edge with appropriate initial conditions. _ primary result of the
derivation was the existence, within the present assumptions, of a modi-
fied Reynolds analogy between heat transfer and skin friction for turbu-
lent flow, a relation which depends upon streamwlse pressure gradient.

Examination of the exact solution for various initial conditions
(representing a variety of transition values) for flow about a hemisphere
and a flat-faced body indicated that choice of the initial condition
would influence the result close to the transition point but that this
influence would decay in the downstreamregions. It was shownthat
hypothetical initial conditions at a stagnation point or leading edge
led to a solution which would satisfactorily approximate those solutions
with arbitrary initial conditions downstreamof their respective initial
streamwise location.

Compsrison of the present results with available experimental heat-
transfer data on seven axisymmetric blunt bolies showedgeneral agree-
ment between experiment and theory, in most cases within the experimental
accuracy. Use of a transition initial condition in preference to a
stagnation initial condition tended to improve agreementbetween experi-
ment and exact theory except for cases where transition appeared to
begin in the region of peak predicted heat transfer. Results using the
approximate solution never deviated from those of the exact solution
with stagnation initial conditions by more than 5 percent.

The present method appears to be capable of predicting turbulent
heat transfer with sufficient accuracy for design purposes, except per-
haps close to transition. Although the exact solution offers the gener-
ality of arbitrary transition initial conditions, the computation is
sufficiently involved to makedesirable the employmentof high-speed
automatic computing equipment. In the absence of specific knowledge of
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the transition phenomenon, the assumption of fully developed turbulent

flow from the stagnation point or leading edge still leads to highly

useful predictions in the region where the flow is actually turbulent.

With this assumption, the approximate solution has value in that it

lends itself to hand calculation with little loss of accuracy.

The present method is restricted to flow without dissociation.

Variable specific heats may be included in an approximate manner) how-

ever, no experimental data including this effect were available for

comparison.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., September 30, 1958.
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APPENDIX

SPECIALCASES

Under certain conditions, equations (46, and (47) maybe solved
analytically. The case with He* = 0 is treated in the text. Some
additional examples are shownin the following sections.

Flat Plate or Cylinder With Sharp Leading Edge,

Constant Specific _at

For the flat plate or cylinder with sh_ leading edge and constant
specific heat, the equations are simplified 1,y the restriction
due dr
_-- = _ = O, _ = 1. Equation (46) is integrated immediately and the
following equation results:

m+l _l
_9= 8t + Am(_)(Ue ) <_- _t) (Ala)

If the flow is assumed to be turbulent from _he leading edge, that is,

8t = _t = O, then

m (Alb)

The skin friction for an all-turbulent flow _s found from equations (41)
and (Alb) to be

1 1

+l cUeX
W = _rl) m \'-P 7---

One example of a friction law is the Biasius pipe-resistance formula as

modified in reference 3 for which Am = 0.013 and m = 4 and for which

equation (A2) becomes
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i
-- m

° (A3)

The modified Reynolds analogy equation for this case becomes

dtdZ+ Z - -- + + He*

1 dHe*
+ = o (A_)

He* at

which is an ordinary linear differential equation with e

tion (Alb). This is of the form

given by equa-

d__Z+fl(_)Z = f2(_)
d_

for which the general solution is

-Sfl(t)dt[7 _fl(t)dtf 2 K1
Z = e e (t)d_ +

The constant K may be evaluated by consideration of the boundary con-

ditions. When the simple case of constant wall enthalpy is considered,

-
at dt

= 0

and a particular solution of (A4) is Z = O. This is the solution of

interest, the flat-plate Reynolds analogy.

The relation between compressible and incompressible skin-friction

coefficients is computed from the definition of X and _f in conjunc-

tion with equation (A2). It is assumed that reference conditions Or

and _r will, in general, be functions of the local flow outside the

boundary layer. For this flat-plate case, then, Or and _r are con-

stant. If equations (5a) and (18) are substituted into equation (A2)

there results
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1 1 m 1

(A5)

The ratio of the skin frictions is, from equations (A2) and (A5),

m i

c__f= (0r_rlm+l:_e\ m+l

_-f \PeP'o,/ \la'o /

at the same Reynolds number.

(A6)

Cone in Supersonic Flow With Attached Shock_

Constant Specific Heats

For the cone in supersonic flow with attached shock and constant

specific heats, no pressure gradient exists for zero angle of attack_

du e dU dr
--e O. In this case, however, r _ x and -- = Constant.thus, ....

dx at dx
The momentum equation (46) becomes

d_ = Atomm+l(Ue )-:(r):

for which a solution, specialized immediately to _t = _t = O, is

i _ m+l

Since r _ x, then _ _

Equation (A7) becomes

because Pr and _r

 m:_m+: ,--:
@ = _: +'l'J\'-e/ m _

are again constant.

(A7)

(A8)
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Combination of equations (41) and (A8) yields

1

m _ 1 {PoUeXl---

 DTm+ 1 ) m+l
(A9)

Just as in the case of the flat plate, the solution Z = 0 for

constant wall enthalpy satisfies the differential equation for Z.

Furthermore, the same compressibility correction for skin friction holds

(eq. (A6)). Finally, it is apparent when comparing the two cases that

1

m

at the same Reynolds number and for the same wall and stream conditions.

In other words, for the Same friction coefficient on cone and plate,

e cone m e plate

when wall and stream conditions are the same on cone and plate. For the

special case m = 4, this relation is

(NRe) cone = -9(NRe)4 plate

a result which compares favorably with that of Van Driest (ref. 2) who

obtained

(NRe) cone = 2(NRe) plate

Stagnation Region on Two- and Three-Dimensional Bodies

Although turbulent flow at a stagnation point has little physical

significance, use of stagnation-point boundary conditions Ix t = 0) in
%-

the "exact" differential equations (46) and (47), as well as in the
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approximate solution, necessitates a stagnation region solution. Such
a solution is easily obtained for the exact case from equations (46)

and (47) by requiring that u = ao_ , r = x for axisymmetric flow, and

u = aoX for two-dimensional flow, where so is the dimensionless
--e

stagnation-point velocity gradient. By this procedure, for a three-

dimensional stagnation region,

1 m-1m --

e = ,(_)
e %+ _-----

m+l

(AlO)

Z=Zo=

4 cite e
_dl

(All)

and for a two-dimensional stagnation region.

1 m-1

o]- - i(_ --Am _ aOr) m ] m

e= )

D-r_- F0 + !I -n+l

(Al2)

Z= Zo =
(Al3)

where

\_/ok e/\i/

+{)-
(Al4)
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-d 2 = -dI - (i + _)

Two roots appear in each equation for Zo . The negative root must

be chosen as that which gives physically reasonable values of Zo, that

is, between zero and 0.8. (See approximate solution.) This is seen

from figure 2_ where Zo for the special case m = l, n = 7, m = 4

has been plotted against stagnation-polnt wall cooling ratio (_)o for

two- and three-dimensional stagnation points (eqs. (All) and (A13)). It

is seen that the negative root is appropriate.

Equations (All) and (A13) also show that Z is not a function of

in the stagnatlon region, and hence (d_) = O.
o
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TABLE II.- SUMMAHY OF EXPERIMENTAL DATA USED TO COMPARE WITH

PREDICTED HEATING RATES

Figure Reference Remarks

13

15

16

17

18

19

2O

2O

22

22

23

23

23

Run 57; _-- -- 0.663; hemisphere;

Z = Radius

Run 61; _= O.66O; flat-faced

cylinder; _ = Radius of cylinder
d

Hw = 0.49; _D = 19.26 × l06 (nota-
te

tlon of ref. 22); hemisphere;

= Radius

= o.77; _D = 10.85 x 106 (nota-

tion of ref. 22); hemisphere;

= Radius

Run 3-12; H_ = 0.55; sphere-cone;

= Nose radius

Hw 0.60; sphere-cone;
5-8; _-=

= Nose radius

Hw 0.60; sphere-cone;
Run 7-3; H-_ =

= Nose _adius
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1.0 Equation i26a) l%eference i4 "

Ue 2 _ Hw/He

c _e 0 Arbitrary

0 --_ 0.5 0

._ Q .8 0.2 _'k_,,, 0.5 0.6 " _.4 _ 2.0 0,.6
1.0 '

"2, .6 '

(D
C)

(D

,

/

/
/

Equation (26a)
.... Reference 14

0 .2 .4 .6 .8 1.0

Velocity ratio, u/u e

Figure i.- Variation of enthalpy difference ratio with velocity ratio in

boundary layer for present method and that of reference 14.
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